Density functional theory of freezing for soft interactions in two dimensions

نویسندگان

  • S. van Teeffelen
  • C. N. Likos
چکیده

PACS. 64.10.+h – General theory of equations of state and phase equilibria. Abstract. – A density functional theory of two-dimensional freezing is presented for a soft interaction potential that scales as inverse cube of particle distance. This repulsive potential between parallel, induced dipoles is realized for paramagnetic colloids on an interface, which are additionally exposed to an external magnetic field. An extended modified weighted density approximation which includes correct triplet correlations in the liquid state is used. The theoretical prediction of the freezing transition is in good agreement with experimental and simulation data. A microscopic theory of freezing and melting is a great challenge in statistical physics. There are two complementary approaches to the liquid-to-solid transition: first, classical density functional theory [1–3] starts from liquid state and views the solid as a condensation of liquid density modes, hence it is a liquid-based approach. Second, crystal elasticity theory [4] is a solid-based theory where the liquid is viewed as a solid with an accumulation of defects. In three dimensions, the freezing transition is first order and it is known that it is not defect mediated. Here, density functional theory provides a molecular theory for the freezing transition. Crystal elasticity theory is appropriate to two dimensions and predicts a possible scenario of two-stage melting via an intermediate hexatic phase [5–8]. The advantage of density functional theory is that it can be used to calculate the structure of the solid, whereas it is not possible to extract the structure of the fluid out of crystal elasticity theory. An excellent realization of a two-dimensional system is provided by paramagnetic colloidal particles in a pendant water droplet, which are confined to the air-water interface [9]. If an external magnetic field is applied perpendicular to the interface, a magnetic moment is induced in the particles resulting into a tunable, mutual dipolar repulsion between them. The corresponding interaction pair potential u(r) is repulsive and soft, being proportional to 1/r 3 , with r denoting the distance between the particles. The prefactor can easily be tuned by varying the external magnetic field strength. In real-space experiments [10, 11], the two-stage melting process was confirmed with an intermediate hexatic phase which had a tiny stability range bracketed between the fluid and crystalline phase. There are also computer

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Density Functional Theory Study of Structure of Phosphonic Acid

The molecular structure of the stable conformation of phosphonic acid in gas phase has beencomputed by employing complete geometry optimization in Density Functional Theory(DFT) methods. The methods used for calculations are B3LYP, BP86 and B3PW91 that havebeen studied in two series of basis sets: D95** and 6-31+G(d,p) for hydrogen and oxygenatoms; LANL2DZ for phosphorus. Bond lengths and angle...

متن کامل

NH3 sensors based on novel TiO2/MoS2 nanocomposites: Insights from density functional theory calculations

Density functional theory calculations were performed to investigate the interactions of NH3 molecules with TiO2/MoS2 nanocomposites in order to completely exploit the adsorption properties of these nanocomposites. Given the need to further comprehend the behavior of the NH3 molecules oriented between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems ...

متن کامل

NH3 sensors based on novel TiO2/MoS2 nanocomposites: Insights from density functional theory calculations

Density functional theory calculations were performed to investigate the interactions of NH3 molecules with TiO2/MoS2 nanocomposites in order to completely exploit the adsorption properties of these nanocomposites. Given the need to further comprehend the behavior of the NH3 molecules oriented between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems ...

متن کامل

Chapter 1 Applications of Density Functional Theory in Soft Condensed Matter

Applications of classical density functional theory (DFT) to soft matter systems like colloids, liquid crystals and polymer solutions are discussed with a focus on the freezing transition and on nonequilibrium Brownian dynamics. First, after a brief reminder of equilibrium density functional theory, DFT is applied to the freezing transition of liquids into crystalline lattices. In particular, s...

متن کامل

Ab initio study of the structural, mechanical and thermal properties of (B, Al and Ga)-N nanotubes (4,0)

In this work we use density functional theory based on the ultra-soft pseudo-potential to calculate thestructural, mechanical and thermal properties of narrow single walled BN, AlN and GaN nanotubes.The electron-electron interactions were expressed within the local density approximation (LDA). Wehave also obtained the Phonon dispersion and elastic constants of these nanotubes using the densityf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006